Code: 20BS1401

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

ELECTROMAGNETIC FIELD THEORY (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks	
		UNIT-I				
1	a)	State and explain coulomb's law indicating	L2	CO1	7 M	
		clearly the units of quantities in the equation				
		of force?				
	b)	Four concentrated charges $Q_1 = 0.3 \mu C$, $Q_2 =$	L4	CO3	7 M	
		$0.2 \mu C$, $Q_3 = -0.3 \mu C$, $Q_4 = 0.2 \mu C$ are				
		located at the vertices of a plane rectangle.				
		The length of rectangle is 5 cm and breadth				
		of the rectangle is 2 cm. Find the magnitude				
		and direction of resultant force on Q_1 ?				
OR						
2	a)	Develop maxwell's first equation.	L3	CO2	7 M	
	b)	A circular disc of 10 cm radius is charged	L3	CO2	7 M	
		uniformly with total charge of 100µC. Solve				
		electric filed intensity at a point 20cm on its				
		axis.				

		UNIT-II					
3	a)	Develop laplace and poisson's equation.	L3	CO2	7 M		
	b)	Derive the continuity equation. What is its	L3	CO2	7 M		
		physical significance?					
OR							
4	a)	Develop the expression for capacitance of	L3	CO2	7 M		
		parallel plate capacitor.					
	b)	Solve the energy stored in a capacitor made	L3	CO3	7 M		
		of two parallel metal plates each of 30 cm ²					
		area separated by 5mm in air.					
		$\varepsilon_0 = 8.854 \times 10^{-12}$. The capacitor is charged to					
		potential difference of 500V.					
		UNIT-III					
5	a)	Using biot-savart law, Find \overline{H} due to	L3	CO4	7 M		
		infinitely long straight conductor.					
	b)	Develop the maxwell's third equation in	L3	CO4	7 M		
		point and integral form.					
		OR		· '			
6	a)	State and explain ampere's circuital law?	L2	CO4	7 M		
	b)	A circular loop is located on $X^2+Y^2=9$ and	L4	CO4	7 M		
		Z=0 carries a direct current of 10A along					
		direction. Examine H at (0, 0, 5) m.					
	•			<u> </u>			
		UNIT-IV					
7	a)	Develop an expression for the force between	L3	CO4	7 M		
		two current carrying wires?					
	b)	A toroid has air core and has a cross	L3	CO4	7 M		

	l	1						
		sectional area of 10mm ² it has 1000 turns						
		and its mean radius is 10mm. Find its						
		inductance?						
OR								
8	a)	Develop an expression for Lorentz force	L3	CO4	7 M			
		equation.						
	b)	A coil of 1000 turns is wound on a toroidal	L3	CO4	7 M			
		iron ring of mean radius 10cm and cross						
		section of 3cm ² . Find the self inductance of						
		the winding if the relative permeability of						
		iron is 800.						
				<u> </u>				
UNIT-V								
9	a)	Explain faradays law of electromagnetic	L3	CO4	7 M			
		induction and develop the expression for						
		induced e.m.f.						
	b)	State and explain the statically induced	L2	CO4	7 M			
		EMF and dynamically induced EMF.						
	l	OR	1	<u> </u>				
10	a)	Write & explain maxwell's equation for	L3	CO5	7 M			
		time varying fields and static fields in						
		differential form.						
	b)	A copper wire carries current of 1A. Solve	L3	CO5	7 M			
		displacement current in the wire at 1 MHz						
		for copper $\varepsilon = \varepsilon_0$ and $\sigma = 5.8 \times 10^7$.						
		**						